LLM Learning & Practice
Welcome to my LLM (Large Language Model) documentation section. Here, I share my learning experiences, practical implementations, and insights about LLM technologies.
Topics
- LLM Infrastructure
- Prompt Engineering
- Vector Database
- RAG (Retrieval Augmented Generation)
- Fine-tuning
- Model Deployment
- LangChain & LlamaIndex
- Best Practices
- Data
- Training
Sources
GPU硬件与软件知识· GPU硬件的架构与特性分析以及GPU基本操作讲解
https://www.zhihu.com/column/c_1552001218175766528
学习计划
趋动科技
第四范式
volcano
Queue
PodGroup
volcanoJob
Kubeflow
分布式训练 从 PyTorch DDP 到 Accelerate 到 Trainer,轻松掌握分布式训练 - Hugging Face - 101.dev 社区
MLops
- https://dvc.org/doc/start DVC is a tool for data science that takes advantage of existing software engineering toolset. It helps machine learning teams manage large datasets, make projects reproducible, and collaborate better.
Prompt engineer
- https://python.langchain.com/docs/use_cases/chatbots/
- https://poe.com/
- https://www.phind.com/
- https://www.learnprompt.pro/
- https://github.com/microsoft/promptbench
- https://promptperfect.jina.ai/
- https://www.learnprompt.org/chat-gpt-prompts-for-education/
- https://openai-sb.com/
https://console.weaviate.cloud/dashboard